

# **PR777**

## References :

#### Polyol: PR777-POLYOL-ST777000

Isocyanate: PR7SERIES-ISO-ST000401

## **Definition** :

#### → <u>PR777</u> :

Polyurethane resin for the realisation of PP-like or HDPE-like parts with the vacuum casting process. The product has high thermal and impact resistance properties, and a low aggressiveness to silicone moulds. Semi-rigid white and colourable material, with a great flexibility.

REACH-compatible material complying with the following European Directives:

- 2011/65/EU 2015/863 2017/2102/EU (RoHS 1 and 2)
- 2002/96/EC (WEEE)
- 2000/53/EC (ELVs)
- 2000/11/EC

#### Average physical properties of the components :

|                                                         | PR777 Polyol<br>ST 777 000 | PR 7 Series Iso<br>ST 000 401    | PR777 Mix<br>ST 777 401     |
|---------------------------------------------------------|----------------------------|----------------------------------|-----------------------------|
| Aspect - Colour                                         | Amber liquid               | Colourless<br>transparent liquid | Amber liquid<br>White solid |
| Brookfield LVT viscosity (mPa.s)<br>According to MO-051 | 230                        | 1200                             | 700                         |
| Density at 25°C<br>According to MO-032                  | 1,10                       | 1,16                             | 1,13                        |

#### **Application properties :**

|                                                            | PR777 Polyol<br>ST 777 000                         | PR 7 Series Iso<br>ST 000 401 | PR777 Mix<br>ST 777 401 |
|------------------------------------------------------------|----------------------------------------------------|-------------------------------|-------------------------|
| Mixing ratio by weight                                     | 100                                                | 100                           |                         |
| Mixing ratio by volume                                     | 100                                                | 95                            |                         |
| Mixing time at 25°C                                        |                                                    |                               | 1 min.                  |
| Potlife on 100g at 25°C<br>According to MO-062             |                                                    |                               | 10 min.                 |
| Demoulding time at 70°C<br>(On 3mm)<br>According to MO-116 |                                                    |                               | 45 min.                 |
| Minimum curing time                                        | 2h at 70°C + 24h at room temperature               |                               |                         |
| Optimal curing time                                        | 2h at 70°C + 2h at 100°C + 24h at room temperature |                               |                         |



## Average mechanical and thermal properties of the cured material :

#### • Average values obtained after post-curing : 2h at 70°C + 24h at room temperature

|                                   | Standard                                        | Unit     | Values PR777 |
|-----------------------------------|-------------------------------------------------|----------|--------------|
| Hardness                          | ISO 868 : 2003                                  | Shore D1 | 75           |
| Flexural modulus                  | ISO 178 : 2011                                  | МРа      | 900          |
| Maximum flexural strength         | ISO 178 : 2011                                  | МРа      | 35           |
| Tensile modulus                   | ISO 527-1 : 2012                                | МРа      | 1000         |
| Elongation at yield               | ISO 527-1 : 2012                                | %        | 9            |
| Elongation at break               | ISO 527-1 : 2012                                | %        | 35           |
| Tensile strength at yield         | ISO 527-1 : 2012                                | МРа      | 34           |
| Tensile strength at break         | ISO 527-1 : 2012                                | MPa      | 32           |
| Charpy impact resistance          | ISO 179-1 : 2010<br>unnotched -1eU <sup>b</sup> | KJ/m²    | 60           |
| Heat Deflection Temperature (HDT) | ISO 75-2 : 2013<br>method B                     | °C       | 94           |
| Glass transition temperature (Tg) | ISO 6721-10 : 2015                              | °C       | >120         |

## • Average values obtained after post-curing : 2h at 70°C + 2h at 100°C + 24 h at room temperature

|                                   | Standard                                        | Unit     | Values PR777 |
|-----------------------------------|-------------------------------------------------|----------|--------------|
| Hardness                          | ISO 868 : 2003                                  | Shore D1 | 75           |
| Flexural modulus                  | ISO 178 : 2011                                  | MPa      | 930          |
| Maximum flexural strength         | ISO 178 : 2011                                  | MPa      | 36           |
| Tensile modulus                   | ISO 527-1 : 2012                                | MPa      | 1100         |
| Elongation at yield               | ISO 527-1 : 2012                                | %        | 10           |
| Elongation at break               | ISO 527-1 : 2012                                | %        | 37           |
| Tensile strength at yield         | ISO 527-1 : 2012                                | MPa      | 35           |
| Tensile strength at break         | ISO 527-1 : 2012                                | MPa      | 36           |
| Charpy impact resistance          | ISO 179-1 : 2010<br>unnotched -1eU <sup>b</sup> | KJ/m²    | 91           |
| Heat Deflection Temperature (HDT) | ISO 75-2 : 2013<br>method B                     | °C       | 110          |
| Glass transition temperature (Tg) | ISO 6721-10 : 2015                              | °C       | >130         |



# Hygiene and safety for using :

Wearing appropriate safety clothes and accessories (gloves, glasses) is advised. Work in a ventilated room.

For more information, please read the Medical and Safety Data Sheet of the material.

# **Operating conditions :**

# → Application process in a vacuum casting machine :

1. Preheat the polyaddition silicone mould at 70°C.

2. Rehomogenise and weigh the separated components (upper cup : Iso / lower cup : Polyol), with addition of the necessary residual quantity in the upper cup. Then, put the cups inside the vacuum casting machine.

If a pigment is added, it should imperatively be mixed to the polyol component. A 1 to 3% rate of the total product quantity (polyol + isocyanate) is recommended.

3. Degas the products during 10 minutes, with agitation in the lower cup (Polyol).

4. Stop the agitation and pour the content of the upper cup (Iso) into the lower cup (Polyol).

- 5. Start the agitation and mix for at least 1 minute.
- 6. Slightly release the vacuum in the chamber to a pressure of about 100 hPa (0,1bar).
- 7. Cast the mixture into the silicone mould until complete filling.
- 8. Break the vacuum back to atmospheric pressure.
- 9. Place the mould in an oven at 70°C.
- 10. Demoulding is possible after :
  - 45 minutes at 70°C, depending on the thickness of the part

In order to obtain the mechanical properties of the material, it is necessary to realise a complete curing, demoulding time included, of :

- Minimum curing time : 2h at 70°C + 24h at room temperature
- Optimal curing time : 2h at 70°C + 2h at 100°C + 24h at room temperature

# → Application process for hand casting :

1. Preheat the polyaddition silicone mould at 70°C.

2. Rehomogenise the polyol and the isocyanate, weigh them in a clean mixing cup.

3. Duly mix both components together for at least 1 minute, making sure that the mixture is homogeneous.

4. Pour the mix in a second cup without scrapping the bottom neither trying to get the residues back from the first mixing cup walls (in order to avoid problems linked to an inhomogeneous mix). Mix again with in the second cup for around 30 seconds.

5. Degas the mixture in a vacuum chamber.

6. Cast in the mould at once, to avoid the incorporation of air in the mould while casting (if possible, cast from a low point).

7. Put the mould in an oven at 70°C.

8. Demoulding is possible after :

45 minutes at 70°C, depending on the thickness of the part

In order to reach the mechanical properties of the material, it is necessary to realise a post-curing, demoulding time included, of :

- Minimum curing time : 2h at 70°C + 24h at room temperature
- Optimal curing time : 2h at 70°C + 2h at 100°C + 24h at room temperature



## Packaging :

- Box of 6 kits of (1,0 kg polyol + 1,0 kg isocyanate) = 12 kg
- Box of 2 kits of (5,0 kg polyol + 5,0 kg isocyanate) = 20 kg

## Storage :

18 months in original and unopened containers, stored between 15 and 25 °C.

# Comment :

The final product colour can vary depending on its exposure to UV light, without altering its mechanical properties.